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Modeling the Number of Children Ever Born 
in a Household in Bangladesh Using 

Generalized Poisson Regression  
Mariam Begum Ratna, Hossain Ahmed Khan, Md Anower Hossain 

Abstract— In this paper, an attempt has been made to model the total number of children ever born in a household in 

Bangladesh by using a generalized Poisson regression model. The generalized Poisson regression model has statistical 

advantages over standard Poisson regression model and is suitable for analysis of count data that exhibit either over-dispersion 

or under-dispersion. The maximum likelihood method is used to estimate the model.  Approximate tests are performed for the 

dispersion and goodness-of-fit measures for comparing alternative models. 
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1 INTRODUCTION

HEN the response or dependent variable is a count 
generated by processes in which the number of 
incidences is due to a rare or chance event, and 

that rare or chance event follows the principle of ran-
domness.  In such cases, Poisson regression model is ap-
plied to fit this type of data. In theory, data of the Poisson 
distribution should have its mean equal to its variance. 
But in practice, data arising from groups or individuals 
may be statistically dependent, so the observed variance 
of the data may be larger or smaller than the correspond-
ing mean.    

There are number of approaches to dealing with count 
data, or data arising from accumulated or aggregated 
binomial (or multinomial) trials. The more familiar is the 
Poisson regression (PR) model. But the generalized Pois-
son regression (GPR) model has shown statistical ad-
vantages over standard Poisson regression, negative bi-
nomial regression, generalized negative binomial regres-
sion and generalized linear models in the event of fitting 
count data that may be over-dispersed or under-
dispersed or equi-dispersed. The GPR provides a versatile 
approach for analyzing count random variables and their 
relationships to other variables or covariates.  

Consul [1] presented pioneering work on a generaliza-
tion of Poisson distribution. Singh and Femoye [2] used 
and suggested the GPR model instead of the PR model in 
their analysis of life table and follow-up data. They sug-

gested that the PR model was not appropriate to analyze 
an extra-Poisson variation survival data set. A number of 
works have suggested various models to deal with extra-
Poisson variation in data. (See, for example, Cox [3]; 
Breslow [4]; Lawless [5]).   

In many empirical studies of fertility, the number of 
children ever born in a household in Bangladesh is mod-
eled as a function of socio-economic variables. The com-
monly used model is the standard Poisson. This model is 
considered because the number of children ever born in a 
family is non-negative. However, this model has some 
restrictions in some situations. In standard Poisson re-
gression model, the conditional mean and variance of the 
dependent variable is constrained to be equal 
(equidispersion) for each observation. In practice, this 
assumption is often violated since the variance can either 
be larger or smaller than the mean. That is, both over-
dispersion and under-dispersion can exist in the count 
data. If the equidispersion assumption is violated, the 
estimates in Poisson regression model are still consistent 
but inefficient. As a result, inference based on the esti-
mated standard errors is no longer valid. As noted in 
Winkelmann and Zimmermann [6], the number of chil-
dren ever born in a household often does not follow 
equal-dispersion assumption when mode is 2. Therefore, 
the standard Poisson regression model which assumes 
equal-dispersion is not appropriate to model data about 
household fertility decision.   

The paper proceeds in the following way. Section 2 de-
scribes the data and variables used in this paper. Section 3 
outlines the generalized Poisson regression model, good-
ness of fit and comparison measures and test of disper-
sion. Section 4 presents and discusses the estimated re-
sults. The paper concludes in section 5.  
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2. DATA AND VARIABLES 
The data from Bangladesh Demographic and Health Sur-
vey (BDHS) 2007 have been used in this study.  The 2007 
BDHS employs a nationally representative sample that 
covers the entire population residing the private dwelling 
units in Bangladesh. The survey used the sampling frame 
provided by the list of census enumeration areas (EAs) 
with population and household information from 2001 
Population Census. Bangladesh is divided into six admin-
istrative divisions: Barisal, Chittagong, Dhaka, Khulna, 
Rajshahi and Sylthet. In turn, each division is divided into 
zillas, and each zilla into upazillas. Rural areas in an 
upazila are divided into union parishads (UPs), and UPs 
are further divided into mouzas. Urban areas in an 
upazila are divided into wards, and wards are subdivid-
ed into mahallas.  EAs from the census were used as the 
Primary Sampling Units (PSUs) for the survey. The sur-
vey was based on a two-stage stratified sample of house-
holds.  At the first stage of sampling, 361 PSUs were se-
lected where 227 were rural PSUs and 134 urban PSUs. 
The survey was designed to obtain 11,485 completed in-
terviews with ever-married women age 10-49. According 
to the sample design, 4360 interviews were allocated to 
urban areas and 7125 rural areas.  

A household fertility decision may depend on different 
factors. Following is the list of dependent and independ-
ent variables used in this study. Table 1 shows the varia-
ble definition and descriptive statistics of each variable.  

Dependent variable: 

• Number of children ever born in a family 

Independent variables: 

• Age  of respondent 

• Has electricity (1 = yes, 0 = no) 

• Has Television (1 = yes, 0 = no) 

• Age at marriage 

• Partner’s education level (1 = HSC or more, 0 = 

otherwise) 

• Type of place of residence (1 = Urban, 0 = else) 

• Literacy of the respondent (1 = SSC or more, 0 = 

else ) 

• Religion of the respondent (1 = Islam, 0 = other-

wise) 

• Contraceptive use (1 = yes, 0 = no). 

 

3. THE GENERALIZED POISSION REGRESSION 

MODEL 
Suppose a count response variable   follows a generalized 
Poisson distribution. To model number of children ever 
born, we define    as the number of children ever born per 
household. Following Singh and Famoye [2], the proba-
bility of mass function is given by  
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where ix  is a )1( −k  dimensional vector of explanatory 

variables including personal characteristics of both hus-
band and wife in a family as well as some demographic 

attributes of the family, and β  is a k dimensional vector 

of regression parameters. The mean and variance of iY  

are given by 

iii xYE µ=)|(  and 
2

)1()|( iiii xYV αµµ += , respec-

tively.   
                                                          

TABLE 1 

VARIABLE DEFINITION AND DESCRIPTIVE STATISTICS (SAMPLE 

SIZE = 10058) 

 

Variable Propor

-tion 

of 1’s 

Mean Std. 

Dev. 

(SD) 

Number of children ever 

born in a family 

 

 2.88 2.07 

Has electricity 0.526   

Has Television 0.374   

Age at marriage  15.39 2.86 

Partner’s education level 0.397   

Place of residence 0.379   

Literacy of the respondent 0.667   

Religion of the respondent 0.902   

Contraceptive use 0.521   

 
The generalized Poisson regression model (1) is a gen-

eralization of the standard Poisson regression (PR) model. 
When 0=α  the probability mass function in (1) reduces 
to the PR model and then 

which means equidispersion. 
In practical applications, this assumption is often not 

true since the variance can either be larger or smaller than 
the mean. If the variance is not equal to the mean, the 
estimates in PR model are still consistent but not efficient, 
which lead to the invalidation of inference based on the 
estimated standard errors.  

For 0>α , )|()|( iiii xYExYV >  and the generalized 
Poisson regression (GPR) model in (1) represents over-
dispersed count data. For 0<α , )|()|( iiii xYExYV <  

 ),|()|( iiii xYVxYE =
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and the GPR model in (1) represents under-dispersed 
count data. In (1), α  is called the dispersion parameter 
and can be estimated simultaneously with the coefficients 
in the GPR model (1).  

To estimate ),( αβ in the GPR model (1), we need the 

log-likelihood function of the GPR model, that is,                                                          
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The maximum likelihood equations for estimating α  
and β  are obtained by taking the partial derivatives and 
equating to zero. Thus we get 
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Substituting )exp( βµ ii x= , Eq. (2) becomes  
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By using an iterative algorithm equations (2), (3) and (4) 

are solved simultaneously. The final estimate of β  from 

fitting a Poisson regression model to the data is used as 

initial estimate of β  for the iteration process. The initial 

estimate of α  can be taken as zero or it may be obtained 

by equating the chi-square statistic to its degrees of free-
dom. This is given by  
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When 0<α  (the case of under dispersion), the value 

of α  is such that 01 >+ iµα  and 01 >+ iyα , 
i.e., ))max(/1,)(max/1(min ii y−−> µα , as re-
quired in equation in (1). An R-program is used to solve 
Eqs. (2), (3), and (4) simultaneously. 
                   

3.1 Goodness-of-fit and model comparison 

When more than one regression models are available for a 
given data set, one can compare performance of alterna-
tive models based on some measures of goodness-of-fit. 
Several measures of goodness-of-fit have been proposed 
in the literature. One commonly used measure is the 
Akaike information criterion AIC, which is defined as  

KAIC +−= l  

where l is the log-likelihood value of the estimated mod-

el and K is the number of estimated parameters. The 

smaller is the AIC, the better is the model. 

Merkle and Zimmermann also suggested several Pseudo-
2R  measures. One of these statistics is defined as  
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GR  measures the explained maximum possible increase in the log-likelihood. 
 

 

TABLE 2 

DETERMINANTS OF HOUSEHOLD FERTILITY: COMPARISON BETWEEN POISSON AND GENERALIZED POISSON REGRESSION  

MODELS. 

1 VARIABLE POISSON REGRESSION  (PR)  GENERALIZED POISSON REGRESSION (GPR) 

ESTIMATES STANDARD 

ERROR (SE) 
−t VALUE  ESTIMATES STANDARD ERROR 

(SE) 
−t VALUE 

I…NTERCEPT 0.3364 0.0707 4.76  0.3071 0.0451            6.81 

HAS_ELEC -0.0254 0.0154 -1.65  -0.0391 0.0201          -1.95 

HAS_TV -0.0872 0.0163 -5.35  -0.095 0.0256          -3.71 

AGE_MAR -0.0472 0.0024 -19.67  -0.0534 0.0105           -5.09 

PAT_EDU -0.1167 0.0144 -8.1  -0.1199 0.0195           -6.15 

RESI -0.0655 0.0138 -4.75  -0.0639 0.0215           -2.97 

EDU -0.0723 0.01378 -5.25  -0.0845 0.0159           -5.31 

RELIGION 0.1135 0.0213 5.33  0.1096 0.0302            3.63 

CON_USE -0.1466 0.0119 -12.32  -0.1843 0.0185           -9.96 

α                                                                  0.0627 0.0021 29.85 

 

 

 

3.2 Test for Dispersion 

The generalized Poisson regression model reduces to the 
Poisson regression model when the dispersion parameter 
α  equals to zero. To assess justification of using GPR 
model over the PR model, we test the hypothesis 

0:against0: 10 ≠= αα HH                                       (6) 

                                                
The test of  0H  in (6) is for the significance of the disper-
sion parameter. Whenever 0H is rejected, it is recom-
mended to use the GPR model in place of the PR model. 
To carry out the test in (6), one can use the asymptotically 
normal Wald type “ t ” statistic defined as the ratio of the 
estimate of α  to its standard error. Another way to test 
the null hypothesis of α equals to zero is to use the like-
lihood ratio statistic, which is approximately chi-square 
distribution with one degree of freedom when the null 
hypothesis is true. Both the likelihood ratio test and the 
Wald type “t” test are asymptotically equivalent. 

 

 

4. RESULTS AND DISCUSSION  

Both Poisson regression (PR) and generalized Poisson 
regression (GPR) models are estimated using sample da-
ta. Table 2 represents the parameter estimates, their 
standard errors, and t -value. Table 3 presents several 
measures of goodness-of-fit including Pearson’s chi-
square, deviance, AIC and  

2

GR . 
 

TABLE 3: 

GOODNESS-OF-FIT TEST MEASURE 

GOODNESS-OF-FIT 

MEASURES 
PR 

 

GPR 

 

PEARSON’S    CHI-SQUARE 7486.13 7571.00 

 DEVIANCE 72935.10 13493.69 

  AIC 25988.93 17929.04 

RG

2
 0.3079 0.4608 
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We note from table 2 that the estimate of dispersion pa-
rameter using GPR model is positive indicating over-
dispersion. The asymptotic t -statistics for testing the null 
hypothesis 0:0 =αH  is significant ( −t value = 29.85). 
The dispersion parameter α  is significantly different 
from zero. So the PR model is not appropriate for this 
data since we reject the null hypothesis 0:0 =αH . From 
table 3, the generalized Poisson regression model is pre-
ferred to the Poisson regression model based on all four 
goodness-of-fit measures: Pearson’s chi-square, deviance, 
AIC and

2

GR . For example, the generalized Poisson re-
gression model has a smaller deviance value (13493.69) 
than the deviance value (72935.10) of the standard Pois-
son regression model. The value of Pearson’s chi-square 
is 7571.00 for generalized Poisson regression model, 
whereas it is 7486.13 for the Poisson model, which indi-
cates that modeling over-dispersion data using the GPR is 
more appropriate than the PR model. 

The parameter estimates are almost similar for both 
Poisson regression and GPR models. This is expected 
since estimates from both models are consistent. The re-
sults from table 2 show that the standard errors of esti-
mates from PR model are under estimated because the PR 
model does not consider the over-dispersion exhibited by 
the data. In this case the standard errors of the estimates 
from GPR are more accurate since it considers the over-
dispersion showed by the data. Therefore, the t -statistic 
for testing the significance of the parameter estimates is 
upward biased for Poisson regression model.  

   From the results in table 2, the coefficient of partner’s 
education and respondent education are negative and 
significant. These imply that households with educated 
parents have fewer children. Also the explanatory varia-
bles have electricity and TVs are significant and are in-
versely related to the family size. This is expected because 
households are aware about the problem of more children 
through the different TV programs about population 
problem.  

The effect of place of residence (1 = Urban, 0 = else) on 
family size is negative and significant. The urban people 
prefer less number of children in the family. The variable 
Religion (1 = Islam, 0 = otherwise) has positive effect on 
family fertility decision and statistically significant. Con-
traceptive use (1 = yes, 0 = no) has negative effect on 
number of children in a family and us significant. The 
variable age at first marriage has negative coefficient in 
the fitted model which implies that the number of chil-
dren in a family decreases as the value of age at first mar-
riage increases. 

 

 

5. SUMMARY 

In this paper, we have described nonlinear regression 
techniques (namely, generalized Poisson regression and 
Standard Poisson regression) appropriate for the analysis 
of number of children in a household of Bangladesh. It 
has been shown that when over-dispersion exists in the 
data generalized Poisson regression model gives better 
fits than standard Poisson regression model. Several 
goodness-of-fit techniques and asymptotic t -test for 
over-dispersion imply that the generalized Poisson re-
gression model is more appropriate for the data about the 
number of children in a household for Bangladesh.   
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