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Abstract—Testing uncorrelation or independence of the two components of a bivariate normal distribution is known for inde-

pendent and identically distributed bivariate normal observations. What happens if the some of three strong assumptions do not 

hold good?  A recent trend among business experts and econometricians is to use bivariate t-distribution whose components 

are correlated and which has thicker sides. It has been pointed out that  the tests for uncorrelation developed in the bivariate 

normal case remains the same for observations following identical bivariate t-distributions. The implication, in this case, is that 

the failure of rejection of hypothesis of uncorrelation of the two components on the basis of a test would not necessarily mean 

independence. Similarly, testing the equality of true variances or homoscedasticity by sample variance ratio is also well known 

for independent and identically distributed observations from two normal populations. What is less known is that even if  the 

sample obervations follow independent and identical bivariate normal distributions, the test remains the same. In this paper, we 

prove that the test of equality of variances remains the same even for observations following identical bivariate t-distributions.  
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1 INTRODUCTION

ET each of the sample observation 

,jX ( 1, 2, , ),j N  follow a bivariate t-

distribution  with mean   (column vector order 2 com-

ponents) and scale matrix   (a 2 2  matrix) where 

1 2( , )    and  ( )ik  , 1, 2;  1, 2i k  . We 

denote 
2 2

11 1 22 2,  ,      
12 1 2    with 

1 20,  0    and the quantity   ( 1 1)    as 

the product moment correlation coefficient between 
1X  

and 2X .  The sample mean vector is ,X  where 

1 2( , ),X X X  so that the sums of squares and cross 

product matrix is given by ( ),ikA a   where 

1

( )( ),
N

ik ij i kj k

j

a X X X X


    1,2; 1,2.i k   Obviously, 

2

1

( ) ,
N

ii ij i

j

a X X


   ( 1,2),i   and 
12 1 1 2 2

1

( )( ).
N

j j

j

a X X X X


    

The sample correlation coefficient is then given by 

12 1 2/ ( ),r a ms s  where 2 /i iis a m ( 1,2)i   and 1.m N    

In 1915, Fisher derived the distribution of the bivariate 
matrix A to study the distribution of correlation coeffi-
cient based on independent observations from a bivariate 
normal population [1]. The distribution of A is also 
known for uncorrelated observations following identical 

bivariate t-distributions. See, for example, in [2] page 157 
and [3].  

A recent interest among the applied scientists is the use 
of fat tailed distributions for modeling business data such 
as stock returns. Since the bivariate t-distribution has fat-
ter tails, it has been increasingly applied for modeling 
business data.  Interested readers may go through [4],[5] 
and [6].  

If sample observations follow bivariate normal distri-

butions, the test statistic 1/2 2 1/2( 1) ( )(1 )m R R    is 

known to have a t-distribution with 1m degrees of 

freedom under the null hypothesis 
0 : 0H    against the 

alternative 
1 : 0.H   In this paper we will expound that 

the assumption of bivariate normality can be relaxed to 

bivariate t-distribution.  

Consider the scaled variances 2 2

1 1/U mS   and 

2 2

2 2/ .V mS   Assuming that the observations are from a 

bivariate normal population, Bose in 1935 and Finny in 

1938 derived the density function of the variance ratio 

/H U V  (See equation 4.1) [7],[8]. The distribution 

specializes to usual F-distribution ( , )F m m  if 0.   

The random variables U and V have a bivariate chi-

square distribution [9] with correlation coefficient 
2 and 

found application in signal processing [10]. 

L 
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Can we relax the assumption of bivariate normality to 

fat tailed distributions, say, to bivariate t-distribution and 

study the behaviour of the variance ratio? In this paper, 

we prove that if the sample observations are uncorrelated 

t-distributions, the distribution of the variance ratio re-

mains the same. 

In Section 3, we derive the joint distribution of scaled 

variances ( , )U V and correlation coefficient ( )R when-

ever the sample observations are uncorrelated bivariate t-

distributions. We pinpoint that the uncorrelation does not 

necessarily imply independence in this case. In Section 4, 

we prove that even if the observations follow identical 

bivariate t-distributions, the distribution of variance ratio 

( / )H U V  is the same as that developed by Bose 

orFinney [7], [8]. 

2 BIVARIATE NORMAL AND T-DISTRIBUTIONS 

Let X  be bivariate normal random vector with density 
function  

 1 1/2 1

2.1

1
( ) (2 ) | | exp ( ) ( ) ,

2
f x x x     

     
 

(2.1) 

which will be denoted by 
2( , ).N   Note that ( )E X   

and the variance-covariance matrix 

( ) ( )( )Cov X E X X     is given by 

( ) .Cov X   The bivariate normal distribution is also 

called elliptical normal distribution as the density func-

tion in (2.1) is constant on the ellip-

soid 1 2( ) ( )x x c     for any constant .c  

The -thj observation with -thi characteristic is de-

noted by ijx  so that the random sample is denoted by 

 ; 1,2; 1,2, , .ijX i j N   Then the sample 
1 2, , , ( 2)NX X X N   

has the joint probability density function 

/2 1

2.2 1 2

1

1
( , , , ) (2 ) | | exp ( ) ( ) .

2

N
N N

N j j

j

f x x x x x    



 
     

 
      

         (2.2) 

 

Each observation ( 1,2, , )jX j N in (2.2) follows (2.1). 

Since the observations in (2.2) are uncorrelated, by virtue 

of normality, they are also independent and we call it In-

dependent and Identical Bivariate Normal (IIBN) model 

for sample. Note that sufficient statistics for  and   

exist in model (2.2). 
In [1], Fisher derived the distribution of A   in order to 

study the distribution of correlation coefficient from a 
normal sample. The distribution of A  is given by  

/2 ( 3)/2 1

2.3

1
( ) 4 ( 1) | | | | exp

2

m mf A m A tr A    
      

 

, 0, 2.A m            (2.3)                                                   

The joint density function of the elements of A  can be 

written as 























 

21
2

12

2
2

2

22

2
1

2

11

2/)3(2
1222112112221124

)1()1(2)1(2
exp

)()(),,(





p

pa

p

a

p

a

aaaaaaf mm

(2.4) 

where, 

11 22 11 22 12 11 220,  0,  ,  2,  1 1a a a a a a a m          .  

Let X  be bivariate -t random vector with probability 
density function 

 
( /2) 1

1/2 1

2.5 ( ) | | 1 ( ) '( ) ( ) ,f x x x


  
 

      

      (2.5) 

where, the scalar   is assumed to be a known positive 

constant, see page 48 in [11].  The variable will be denoted 

by 
2( , ; ).T    Note that ( )jE X   and 

 
1

( ) ( )( ) 1 (2 / ) ,Cov X E X X  


       2.   

Bivariate  t -distribution can be generated by Conditional-

ity Principle, Conditional Independence or by Stochastic 

Decomposition [12]. If sample observa-

tions ( 1,2, , )jX j N  are independent
2( , ; )T   , the joint 

density for the sample is given by  

 
( /2) 1

/2 1

2.6 1 2

1

( , , , )  | | 1 ( ) ( ) ( ) ,
N

N

N j j

j

f x x x x x


  
 

 



     

      (2.6) 
which will be called an Independent and Identical Bivari-
ate T (IIBT) model for the sample. Note that sufficient 
statistics for  and   do not exist in model (2.6). Is there 
any other alternative model for sample that shares intrin-
sic features, namely, marginality, conditionality, sym-
metry, equiprobable contour of (2.2)? 

 

Now consider a sample 
1 2, , , ( 2)NX X X N   

1 2, , ( 2)NX X X N   having the joint probability density 

function 

1)2/(

1

1

2/
217.2

)()()(1

),,,(



























v

N

j

jj

N
N

xvx

xxxf





 (2.7)   

Each observation ( 1,2, , )jX j N in (2.7) follows 
(2.5). Since the observations in (2.7) are uncorrelated but 
not necessarily independent, (2.7) is called Uncorrelated 
and Identical Bivariate T (UIBT) model for the sample. 
Note that the sample observations in (2.7) are independ-
ent if    in which case (2.7) converges to (2.2) which 
is the joint density function of N uncorrelated observa-
tions from bivariate normal distribution. Samples can be 
generated from (2.7) by conditionality principle, condi-
tional independence or much easily by stochastic decom-
position [12]. In [13], Kelejian and Prucha proved that the 
Uncorrelated and Identical Bivariate model (2.7) captures 
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fat tailed behaviour better than the independent model in 
(2.6). 
The density function of A based on UIBT model (2.7) is 
given by 

 
( /2)

/2 ( 3)/2 1

2.8 ( ) | |  | | 1 ( )
m

m mf A A tr A



 

      ,

0, 2A m          (2.8) 

where, 2,m  see page 160 in [3]. The above can also be 
written in terms of the elements as  

 
( 3)/2

2

2.9 11 22 12 1 2 11 22 12

( /2)

11 22 12

2 2 2

1 2 1 2

( , , ) ( )

21
                       1 ,

(1 )

m
m

m

f a a a a a a

a a a


 



     




 

 

  
         

(2.9) 

where, 
11 22 11 22 12 11 220,  0,  ,  2,  1 1a a a a a a a m          .  

3 TESTS ON CORRELATION COEFFICIENT 

3.1 Testing the Significance of Correlation Coeffi-
cient under Bivariate Normality 

If each of the sample observations follow a bivariate nor-

mal distribution, it is well known that under the null hy-

pothesis 
0 : 0,H   the test statistic 

2 ~ (1/ 2,( 1) / 2),R Beta m and  
1/2

21 1m R R


   has a Stu-

dent t-distribution with ( 1)m   degrees of freedom.The 

likelihood ratio test of the null hypothesis 
0 : 0H    

against the alternative 
1 : 0H    is done by the above 

statistic.   
 

3.2 Testing the Significance of Correlation Coeffi-
cient under Bivariate t-Distribution 

If sample observations follow UIBT model (2.7), then we 
need the distribution of R for testing the null hypothesis 

0 : 0H    against the alternative 
1 : 0.H    It has 

been proved by Fang and Anderson; and Ali and Joarder 
in [2] and [14] respectively that the distribution of sample 
correlation coefficient remains the same as that for bivari-
ate normal distribution. The proofs were done for a gen-
eral class of distributions. For wide spectrum of readers, 
we sketch the proof in Theorem 3.2. The joint density 
function of scaled variances and correlation coefficient is 
derived below. 
 

Theorem 3.1. Let 
2 2

1 2,S S and R be sample variances and 

correlation coefficient based on a sample following bivariate 

Uncorrelated T-model (2.7). Then the joint density function of 
2 2

1 1/ ,U mS   2 2

2 2/ ,V mS  R is given by  

 

 
mv

m

m
RVU

uvprvu
pv

r

uvrvuf











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
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


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

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2

2/)3(2
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(3.1) 

Where, 2m   and 1 1.    

 

Proof. The density function of the elements of A based 

on UIBT model (2.7) is given by (2.9), where 

11 22 120, 0, , 1 1a a a        , 

1 22, 0, 0m     . Under the transformation 

2 2

11 1 22 2 12 1 2, ,a ms a ms a mrs s    

2 2 2 2 2 2 2 2

11 22 1 2 12 1 2(i.e., ,  )a a m s s a m r s s  with Jacobian 

2 2 3

11 22 12 1 2 1 2( , , , , )J a a a r s s m s s  , we have,  
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The transformation 
2 2

1 1 ,ms u  
2 2

2 2ms v with Ja-

cobian  
22 2 2

1 2 1 2( , , )J s s u v m    , leads to (3.1). 

 
As  , the joint density of ,U V  and R  converges 
to the joint density function of ,U V  and R  if the sample 
is drawn from a bivariate normal population [15]. 
 

Theorem 3.2. Let 
2 2

1 2,S S and R be sample variances and 

correlation coefficient based on uncorrelated bivariate t-model 

(2.7). Then the density function of R is given by  

 
 

/2
2 2

( 3)/2
2 2

0

2 1 (2 )
( )  1  ,  

 ( 1) ! 2

m
m k

m

R

k

r m k
f r r

m k

 










  
    

   


1 1,r          (3.2) 

where, 2m   and 1 1.    
 

Proof. Since 22 (1 ),u v r uv      by expanding the 

last term of (3.1), the probability density function of R  

can be written as  

 

  dudvuvprvu
pv

uv

rrf

mv

m

m
R














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


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



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)2/(

2

0 0
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2/)3(2

2
)1(

1
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)1()(

 



  

Th e n  t h e  t ra n sform a t i on     2 2

1 21 ,  v 1u y y      

with Jacobian  
2

2

1 2( , , ) 1J u v y y    yields 
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 
( 3)/2

2( ) 1 ( , , / 2)
m

Rh r r J r m 


                         (3.3)           

where, 

 /2 1

0 0

( , , ) ( ) 1 2
m

mJ m uv u v uv dudv


  
 

 
     . It can 

be evaluated that  

2

0

( ) (2 )
 ( , , ) ,

( ) ! 2

k

k

m k
J m

m k

 
 







  
   
   

  so that from (3.3), 

we have  

 
( 3)/2

2 2

0

(2 )
( ) 1 ,

! 2

k
m

k

m k
h r r

k






 
    

 
  which, apart 

from normalizing constant,  is known to be the density 

function of R . 
The density function of R was derived originally by 

Fisher in 1915 for independent sample observations fol-
lowing identical bivariate normal distributions [1]. Theo-
rem 3.2 indicates that the assumption of bivariate normal-
ity under which tests on correlation coefficient are devel-
oped can be relaxed to bivariate t-distribution.  

Acceptance of the null hypothesis does not mean in-

dependence unless the sample is from bivariate normal 

distribution. In view of Theorem 3.2, the test is true for 

bivariate t-distribution in which case acceptance of 

0 : 0H   implies uncorrelation but not necessarily in-

dependence.  
We warn that the distribution of R  is not necessarily 

the same if we had independent model (2.6) for the sam-
ple. The approximate distribution of  R  for independent 
observations from bivariate t-population can be obtained 
from page 157 in [11]. For the distributions of R in nonel-
liptical populations, the reader is referred to [16] and the 
references therein. 

4 TESTING EQUALITY OF VARIANCES 

Consider testing the equality of variances under three 

different situations. Suppose that we want to test the hy-

pothesis 
2 2

0 1 2: ,H    against the alternative hypothe-

ses 
2 2

0 1 2: .H    

 

 4.1 Independently and Identically Distributed Ob-

servations from 
2

1 1( , )N   and 
2

2 2( , )N    

Consider two independent samples 

1 jX ( 1, 2, , )j N and 
2 jX ( 1, 2, , )j N from 

2

1 1( , )N   and 2

2 2( , )N   respectively. Then the likelihood 

ratio is given by 
/22

,
(1 )

m m

m

H

H
 


 Where, / .H U V  Since,  is a monotonic 

function of ,H  the test can be carried out by .H  The criti-

cal region 0{ : 0 }    is equivalent to 

{ :{ } { }}l uH H H H H    where 
uH and 

lH can be deter-

mined so that under null hypothesis ( ) / 2uP H H    

and ( ) 1 ( / 2).lP H H     

 
4.2 Independently and Identically Distributed Ob-

servations from 
2( , )N    

Consider observations 
1 2, , ( 2)NX X X N   each having 

2( , )N   . Then it follows from Bose (1935) or Finney 

(1938) that H has a density function 
( 1)/2

2 /2 ( 2)/2 2

2

(1 ) 4
( ) 1 ,  0,

(1 ) (1 )
,

2 2

m
m m

H m

h h
f h h

m m h h
B

 
 

  
   

    
 
 

 

Which, will be denoted by ( , ; ).F m m   In [8], Finney 
compared the variability of the measurements of standing 
height and stem length for different age group of school 
boys by his method with the help of Hirschfeld [17].  In 
[18], Wilks developed the likelihood ratio test for testing 
the equality of variances in presence of correlation if the 
parent population is bivariate normal. An excellent re-
view is available in [19] by Modarres, who also per-
formed Monte Carlo simulation to determine the behav-
ior of the likelihood ratio test. 
 
4.3 Uncorrelated and Identically Distributed Obser-
vations from Bivariate T-Distribution 

In this section we will prove that the even if each of the 

sample observations 
1 2, , ( 2)NX X X N   follow identical  

bivariate t-distribution and the sample has the model 

(2.7), the distribution of /H U V remains the same as 

( , ; ).F m m   Note that the observations are uncorrelated and 

not necessarily independent though the correlation be-

tween the components 1 jX and 2 jX of ( 1,2, , )jX j N is 

 [14].  

 

Theorem 4.1 Let 
2 2

1 2,S S and R be sample variances and 

correlation coefficient based on uncorrelated bivariate t-

model (2.7). Also let  2 2

1 1/U mS   and 2 2

2 2/V mS   be 

scaled sample variances. Then the density function of 

/H U V is given by  
( 1)/2

2 /2 ( 2)/2 2

2

(1 ) 4
( ) 1 ,  0,

(1 ) (1 )
,

2 2

m
m m

H m

h h
f h h

m m h h
B

 
 

  
   

    
 
 

   (4.1) 

Where, 2m   and  1 1,    and ( , )B a b  is the 

usual beta function. 
 

Proof.  It follows from (3.1) that the joint density function 
of  U  and V  is given by 
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























)2/(

2

1

1

2/)3(2

1)2/(
,

2
)1(

1
1)1(

)(),( 

  (4.2) 

It follows that the density function of /H U V  is giv-
en by  
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Substituting
2(1 ) 2 (1 ),v h rv h y      with the 

Jacobian 

21
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 
, we have 
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


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
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(4.3) 

Since the integral in y can be converted to a beta type 
integral and it gets absorbed into the normalizing con-
stant, 

1( 2)/2

1

2
( ) 1

(
.

1 ) 1

m
m

H m

r

h r h
f h dr

h h








 
     

      (4.4)               

which is equivalent to what was obtained by Bose in 1935 
[7] or Finney in 1938 [8], and is equivalent to (4.1). 

Equation (4.1) is well known for bivariate normal dis-
tribution (Bose, 1935). This proves the robustness of vari-
ance ratio in the class of bivariate elliptical t-distributions. 
The distribution of test statistic /H U V  given by (4.1) 
will be denoted by ( , ; ).F m m   
 

Example 4.1 A chemical engineering is investigating the 
effect of process operating temperature ( x ) on product 
yield ( y ). The study results in the following data: 
 

x  y  
100 45 
110 51 
120 54 
130 61 
140 66 
150 70 
160 74 
170 78 
180 85 
190 89 

 

See page 457 in [20]. We assume that X  and Y have an 
elliptical t-distribution with correlation coefficient   
given by (2.7). 

a. We want to test 
0 : 0H    against 

1 : 0.H   The statis-

tic 
2

1

1

R m
T

R






  

has a t-distribution with a degrees of freedom of 2m   
so  that the Rejection Region is { : 2.306 2.306}.t t    
Since the sample produces 

12

11 22

3985
0.998128718

(8250)(1932.10)

a
r

a a
    

and 

2

1
48.9696,

1

r m
t

r


 



we reject the null hypothesis and 

accept the alternative hypothesis. In the classical method, 

the assumption of bivariate normality of X  andY  and 

the independence of bivariate observations were re-

quired. 

b. We want to test 2 2

0 1 2:H    against 2 2

1 1 2:H   where 

2

1 and 
2

2 are the true variations of temperature and 

that of product yield.  Let
2

1s and 
2

2s are the sample varia-

tions of temperature and that of product yield.   

The statistic 
2

1

2

2

/
,

/

s m
F

s m
 has a variance ratio distribution 

with the same degrees of freedom of freedom of 9 so that 

the Rejection Region is{ : 0.3145 3.18}.F F  Since the 

sample yields 1932.10 / 9
0.2342,

8250 / 9
F   we do not reject null 

hypotheses. In the classicalmethod, the assumption of 

normality of X  andY  and their independence are re-

quired. 

5 CONCLUSION 

The testing of equality of variances in presence of correla-

tion with a bivariate normal population has a long histo-

ry. Under the null hypothesis, the test statistic /H U V  

has a ( , ; )F m m   distribution and can be used for testing 

2 2

0 1 2: ,  0H     against 2 2

0 1 2: ,  0H      if  is known.  

In this paper, we have proved that the assumption of 
normality can be relaxed to bivariate t- distribution for 
testing equality of variances in presence of correlation. 
However, the acceptance of the null hypothesis in this 
case would mean uncorrelation; It would mean inde-
pendence in the special case of bivariate normality. The 
robustness of the distribution of the variance ratio or of 
the test will stimulate statisticians, econometricians and 
business experts to embark on further investigation in the 
area, let alone the use of classical results with confidence.     
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