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1.  INTRODUCTION
iver water pollution can be modeled using one di-
mensional advection–diffusion equation (ADE). 
This equation reflects physical phenomena where in 
the diffusion process particles are moving with cer-

tain velocity from higher concentration to lower concen-
tration. It is a partial differential equation of parabolic 
type, derived on the principle of conservation of mass 
using Fick’s 1st law. Due to the growing surface and sub-
surface hydro-environment degradation and the air pol-
lution, the advection–diffusion equation has drawn sig-
nificant attention of hydrologists, civil engineers and ma-
thematical modelers. The analytical/numerical solutions 
along with an initial condition and two boundary condi-
tions help to understand the contaminant or pollutant 
concentration distribution behavior through an open me-
dium like air, rivers, lakes and porous medium like aqui-
fer. It has wide applications in other disciplines too, like 
soil physics, petroleum engineering, chemical engineering 
and biosciences. 

Many researchers have already been worked on it. 
Ogata and Banks [7] obtained an analytical solution of the 
one dimensional ADE by reducing the original ADE into 
a diffusion equation by applying moving coordinates. 
Banks and Ali[12] obtained an analytical solution of the 
one dimensional ADE by reducing the original ADE into 
a diffusion equation by introducing another dependent 
variable. Atul Kumar, Dilip Kumar Jaiswal and Naveen 
Kumar [6] presented an analytical solution of the one di-
mensional ADE by reducing the original ADE into a dif-
fusion equation by using Laplace transformation tech-
nique. Agusta and Bamingbola [8] studied on the numeri-

cal treatment of the mathematical model for water pollu-
tion. This study was examined by various mathematical 
models invoving water pollution. The authors used the 
implicit centered difference scheme in space and a for-
ward difference scheme in ti 
mefor the evaluation of the generalized transport equa-
tion.ChangiunZhu, LipingWa and Sha Li [20] presented a 
numerical simulation of hybrid finite analytic methods 
for ground water pollution. Changjun and Shuwen [21] 
made a numerical simulation on river water pollution by 
using grey differential model. They corrected the model 
in finding the truncation error and found that the ob-
tained results from the grey model are excellent and rea-
sonable. Thongmoon and Mckibbin [14] compared some 
numerical methods for the advection-diffusion equation. 
They reported that the finite difference methods (FTCS, 
Crank Nicolson) give better point-wise solutions than the 
spline methods. M. M. Rahman, L.S. Andallah [22] pre-
sented a simulation of water pollution by finite difference 
method. They estimated and analyzed the extent of water 
pollution at different time and points. 

In the present paper our intention is to investigate ma-
thematical models and subsequent numerical methods to 
predict the contaminant concentration levels in a river at 
different time and different points of water bodies. 

2.GOVERNING equation 
The one-dimensional advection-diffusion equation (1) is 
considered as water pollution model is given as  

R
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휕푐
휕푡

+ 푢
휕푐
휕푥

= 퐷
휕 푐
휕푥

… … … . (1) 

where c represents the solute concentration [ML-3] at the 
point x, along longitudinal direction at time t, D is the 
solute dispersion, if it is independent of position and 
time, is called dispersion coefficient [L2T-1], t = time [T]; x 
= distance [L] and, u is the mean flow velocity [LT-1] as-
sumed to be constant. 
Appended with initial condition 

푐(푥, 0) = 푓(푥)0 ≤ 푥 < 푙 

and boundary conditions 
푐(푥 = 0, 푡) = 푔 (푥)                   0 < 푡 ≤ 푇 

푐(푥 = 푙, 푡) = 푔 (푥)                     0 < 푡 ≤ 푇 

the ADE formulates an initial boundary value problem 
(IBVP). 

2.1 ADVECTION DIFFUSION EQUATION AND ITS DERIVATION 
For our model we assumed that the advection-diffusion 
equation may be a good first approximation to model the 
river pollution levels. It was also assumed that the river 
had a uniform cross-sectional area. Therefore, the river 
was assumed to be linear or one-dimensional (a pipe with 
a uniform cross-sectional area). 
 

 

    x=0      x=a              x=b      x=1 

A one-dimensional river cross-section with arbitrary 
interior and end points at x=0 and x=1. 
The advection-diffusion equation in one dimension is 

given by 

푐 = 퐷푐 − 푢푐 + 푓… … … … (2) 

where, the parameters are defined as follows- c is the con-
centration, x is the position on the river, t is the amount of 
time that passes, D is the diffusion factor, u is the velocity 
of the river, and f is the source or sink. The dimensions of 
the terms and coefficients in the equation are as follows- 
 
푐 = , 푐 = , 푐 =

,퐷 = ,푢 = and 푓 = . 

 

The derivation of equation (1) is as follows- 
The time rate of change in concentration amount of 

contaminants due to a tributary in the interval from point 
a to point b in the river is represented by 

퐴 푓 (푥, 푡)푑푥… … … . . (3) 

whereA is the cross-sectional area of the river and f0 is the 
source/sink.The total amount of contaminant in the river 
on the interval (a, b), is given by 

퐴 푐(푥, 푡)푑푥… … … (4) 

The flux in concentration across a plane due to diffu-
sion is the amount of concentration that passes through 
this plane due to the diffusion process. According to 
Fick’s Law of Diffusion, the concentration flux due to dif-
fusion across any cross-section at a point a is proportional 
to the product of the cross-sectional area and the concen-
tration gradient cx. The flux in concentration due to diffu-
sion at the points a andb with cx being the concentration 
gradient is given by respectively. 

 
−퐴퐷 푎, 푐(푎, 푡) 푐 (푎, 푡) … … … (5) 

and 

−퐴퐷 푏, 푐(푏, 푡) 푐 (푏, 푡) … … … (6) 

The concentration flux due to advection across any 
cross-section at point x is proportional to the product of 
the velocity, cross-sectional area, and concentration. By 
conservation of mass, we have 
time rate of change = diffusion flux at (x=a) - diffusion 
flux at (x=b) + advection flux at(x=a) - advection flux at ( 
x=b) + sources or sinks, 
or equivalently, 

푑
푑푡
퐴 푐푑푥 = −퐴퐷 푎푐(푎, 푡) 푐 (푎, 푡) + 퐴퐷 푏, 푐(푏, 푡) 푐 (푏, 푡)

+ 푢퐴푐(푎, 푡)− 푢퐴푐(푏, 푡)

+ 푓 (푥, 푡)푑푥… … … (7) 

Now, divide through by A and let ( ( f0 /A) = f  ). Using the 
fundamental theorem of calculus, 

푑
푑푥

푓(푥)푑푥 = 푓(푏)− 푓(푎) … … … (8) 

the result is  

[(푐) − (퐷푐 ) + (푢푐) − 푓]푑푥 = 0 … … … (9) 

The choices of points a and b are arbitrary, so the 
integral equation is written as the partial differential equ-
ation 

푐 − (퐷푐 ) + (푢푐) = 푓… … … (10) 

Assume that there is no source or sinks holds ( f = 0 ) 
and let D and u be constants. The final equation appears 
as 

푐 + 푢푐 − 퐷푐 = 0 

Implies that 
휕푐
휕푡

+ 푢
휕푐
휕푥

= 퐷
휕 푐
휕푥

… … … . (11) 

2.2 ANALYTICAL SOLUTION 
By coordinate transformation, the exact solution of the 
advection-diffusion equation in unbounded is given by 
[1] 

퐶(푥, 푡) =
푀

퐴√4휋퐷푡
푒푥푝 −

(푥 – (푥  +  푢푡))
4퐷푡

… … … (12) 

where,  M = mass of the pollutant 



34 ULAB JOURNAL OF SCIENCE AND ENGINEERING 
 

 

A = cross sectional area perpendicular to x 
with the initial condition c(x,0)=(M/A)(x), where (x) is 
the Dirac delta function. 

3. NUMERICAL METHOD FOR GOVERNING EQUATION 
We consider the one–dimensional water pollution model 
problem as an initial and boundary value problem. 

휕퐶
휕푡

+ 푢
휕퐶
휕푥

= 퐷
휕 퐶
휕푥

… … … … (13) 

With initial condition 
푐(푡 ,푥) = 푐 (푥);                   푎 ≤ 푥 ≤ 푏 

and boundary conditions 
푐(푡, 푎) = 푐 (푥) ;                  푡 ≤ 푡 ≤ 푇 

푐(푡, 푏) = 푐 (푥) ;                   푡 ≤ 푡 ≤ 푇 

Finite difference techniques for solving the one dimen-
sional advection diffusion equation can be considered 
according to the number of spatial grid points involved, 
the number of time levels used, whether they are explicit 
or implicit nature. 

In Mathematics, the finite difference methods (FDM) 
are numerical methods for solving differential equations 
by approximating them with difference equations, in 
which finite differences approximate the derivatives. 
FDMs are thus discretization methods. 

Today, FDMs are the dominant approach to numerical 
solutions of partial differential equations. Our goal is to 
approximate solutions to differential equations. i.e. to 
find a function (or some discrete approximation to this 
functions) which satisfies a given relationship between 
various of its derivatives on some given region of 
space/and or time, along with some boundary conditions 
along the edges of this domain. In general, this is a diffi-
cult problem and rarely an analytic formula can be found 
for the solution. A finite difference method proceeds by 
replacing the derivatives in the differential equation by 
the finite difference approximations. This gives a large 
algebraic system of equation to be solved in place of the 
differential equation, something that is easily solved on a 
computer.  

3.1 EXPLICIT CENTERED DIFFERENCE SCHEME BY 
FTBSCS TECHNIQUES 

Consider the model equation + 푢 = 퐷 … … … (14) 
In order to develop the scheme, we discretize the x-t 
plane by choosing a mesh width hx space size and a 
time step size kt. The finite difference methods, we will 
develop, produce approximations 푐 ∈ 푅  to the solution 
푐(푥 , 푡 ) in the discrete points by 

푥 = 푖ℎ,    푖 = 0, 1, 2, 3, … … … 

푡 = 푛푘,   푛 = 0, 1, 2, 3, … … … 

Let the solution 푐(푥 , 푡 ) be denoted by 퐶  and its approx-
imate value by 푐 . 
By Explicit upwind time difference formula 

휕퐶
휕푡

=
퐶 − 퐶

∆푡
… … … (15) 

Next use the backward space difference formula 

휕퐶
휕푥

=
퐶 − 퐶

∆푥
… … … (16) 

And centered space difference formula 
휕 퐶
휕푥

=
퐶 − 2퐶 + 퐶

∆푥
… … … (17) 

Substituting equations (15 - 17) into equation (14) and 
rearrange according the time level, lead to 

퐶 − 퐶
∆푡

+ 푢
퐶 − 퐶

∆푥
= 퐷

퐶 − 2퐶 + 퐶
∆푥

 

Which leads to 

퐶 = 퐶 −
푢∆푡
∆푥

(퐶 − 퐶 ) +
퐷∆푡
∆푥

(퐶 − 2퐶 + 퐶 ) 

∴ 퐶 =
푢∆푡
∆푥

+
퐷∆푡
∆푥

퐶 + 1−
푢∆푡
∆푥

− 2
퐷∆푡
∆푥

퐶

+
퐷∆푡
∆푥

퐶  

Implies to 
퐶 = (훾 + ) ∗ 퐶 + (1− 훾 − 2 ∗ ) ∗ 퐶

+  ∗ 퐶 … … … (18) 

  In which 

훾 =
푢∆푡
∆푥

 ,  =
퐷∆푡
∆푥

 

3.2 STABILITY CONDITIONS FOR THE SCHEME BY FTBSCS 
TECHNIQUES 

The explicit centered difference scheme for (14) is given 
by 

퐶 = (훾 + ) ∗ 퐶 + (1− 훾 − 2 ∗ ) ∗ 퐶

+  ∗ 퐶 … … … (19) 

In which 

훾 =
푢∆푡
∆푥

 ,  =
퐷∆푡
∆푥

 

The equation (19) implies that if 
0 ≤ 훾 +  ≤ 1… … … (i) 

0 ≤ 1− 훾 − 2 ≤ 1 … … … (ii) 

0 ≤  ≤ 1 … … … (iii) 

then the new solution is a convex combination of the two 
previous solutions. That is, the solution at new time-step 
(n+1) at a spatial node i is an average of the solutions at 
the previous time-step at the spatial-nodes i-1, i and i+1. 
This means that the extreme value of the new solution is 
the average of the extreme values of the previous two 
solutions at the three consecutive nodes. Therefore, the 
new solution continuously depends on the initial value 
푐 , 푖 = 1, 2, 3, … … … .푀. 
(ii) implies훾 ≤ 1 − 2 ≤ 1 +  … … … (iv) 

(i) implies− ≤ 훾 ≤ 1 −  
∴ − ≤ 훾 ≤ 1 − 2by (iv) 

Therefore, 
the conditions are 0 ≤  ≤ 1 and − ≤ 훾 ≤ 1 − 2 
That is,0 ≤ ∆

∆
≤ 1 and − ∆

∆
≤ ∆

∆
≤ 1 − 2 ∆

∆
 are the st 

ability conditions of (19). 
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4. ALGORITHM FOR THE NUMERICAL SOLUTION 
To find the numerical solution of the model, we have to 
accumulate some variables which are offered in the fol-
lowing algorithm. 
Input:nx and ntare the number of spatial and temporal 
mesh points respectively. 

t ,  the right end of (0, T) 
x , the right end point of (0, b) 
C , the initial concentration density, apply as initial  
condition 
C , left hand boundary condition 
C , right hand boundary condition 
D, diffusion rate 
u, velocity 

Output:C(x, t), the solution matrix 
Initialization: 푑푡 = , the temporal grid size 

  푑푥 = , the spatial grid size 

  푔푚 = ∗  ,the courant number 

  푙푑 = ∗
( )

 (peclet number) 

Step 1. Calculation for concentration profile of explicit 
centered difference scheme 
forn=1 to nt 

fori=2 to nx 
퐶(푛 + 1, 푖) = (+ ) ∗ 퐶(푛, 푖 − 1) + (1− − 2 ∗ ) ∗ 퐶(푛, 푖)

+  ∗ 퐶(푛, 푖 + 1) 

end 
end 

Step 2: output C(x, t) 
Step 3: Figure Presentation 
Step 4: Stop 

5. COMPUTATIONAL RESULTS 

5.1. ERROR ESTIMATION AND CONVERGENCE 
We have discussed two types of explicit finite difference 
schemes in the previous sections.  
Now, we compute the relative error of the explicit differ 
ence scheme by using FTBSCS technique which is defined 
by the relative error in L − norm as 

푒푟푟 =
∥ 퐶 − 퐶 ∥

∥ 퐶 ∥
 . … … … (20) 

where, 퐶 is the exact solution and 퐶 is the numerical solu-
tion computed by the finite difference scheme by FTBSCS 
techniques for time 푡 ∈ [0, 6]. 
 

The following figure 5.1 shows the convergence of rel-
ative error by the scheme FTBSCS techniques. 

Numerical computation of ADE is presented by using 
explicit finite difference methods by FTBSCS techniques 
and compared with an exact solution of the ADE. A good 
agreement between the numerical solutions and the ana-
lytical solutions are obtained and the error becomes clear 

when using large size step for time. The choice of smaller 
discretization parameters (δtand δx) produce less errors. 
However we can say that FTBSCS techniques show the 
stable and accurate solutions for the advection diffusion 
equation.  

 
Figure 5.1 Rate of Numerical feature of Convergence. 

5.2 NUMERICAL SIMULATION AND RESULTS DISCUSSIONS 
This section presents the numerical simulation results for 
pollutant transportation in river water with increasing 
water flow velocity and increasing diffusion coefficient. 
To test the accuracy of the numerical scheme by FTBSCS 
technique for the ADE, we implement the model for some 
artificial data for the transport of the pollutant in the river 
water. Our aim is to show that for the water pollution, 
any substance with bigger diffusion results a wider pollu-
tant front or a bigger diffusion distance. For different 
coefficients ranging from 9m2/s to 25 m2/s, as shown in 
figures 5.2 to 5.4. 
 
Problem description: Estimation of pollutant in a river of 
length=600 m=0.6 km at all time t = 1min to t = 6 min. 
 

If u =1 m/s = 3.6 km/h and D = 25 m2/s at time from 1 
min to 6 min, for the numerical scheme FTBSCS technique 
is shown in Figure 5.2. Which shows that the pollutant 
distribution within the described domain. 
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Figure 5.2:1D ADE with u = 1 m/s = 3.6 km/h and D = 9 m2/s. 
 

The curve marked by “solid line” shows the concentra-
tion profile for 1 minute (left), the curve visible by “dash 
line” represents the concentration profile for 2 mi-
nutes(left). The curve “dot line” shows the concentration 
profile for 3 minutes, the curve visible by “dash-dot line” 
represents the concentration profile for 4 minutes, The 
“solid line” curve shows the concentration profile for 5 
minutes (right) and the curve visible by “dash line” 
represents the concentration profile for 6 minutes(right). 
We have seen that the pollutant concentration is increas-
ing with respect to time increasing. 

Now, we observe the following different figures for 
different diffusion coefficients and for different velocities. 
If u = 1 m/s = 3.6 km/h and varying the diffusion rate a 
time t = 6 min, the solution appeared is given below: 
 

 
Figure 5.3:1D ADE with u=1 m/s=3.6 km/h and varying the diffusion 
rate at time 6 min. 
 

If D = 9 m2/s and varying the velocity at time 6 min, the 
solution appeared is given below: 
 

 
Figure 5.3:1D ADE with diffusion D = 9 m2/s = 3.6 km/h and varying 
the velocity at time 6 min. 
 
If varying both velocity and diffusion coefficient at time 6 
min, the solution appeared is given below: 
 

 
Figure 5.4:1D ADE with varying both the velocity and diffusion at 
time 6 min. 

 
As we know the stability conditions of the scheme by 

FTBSCS technique are 0 ≤ ∆
∆

≤ 1and − ∆
∆

≤ ∆
∆

≤ 1 −

2 ∆
∆

, this course of action will be continued until this sta-
bility conditions are satisfied. From this conditions, we 
have the diffusivity coefficient ranges from D = 9 m2/s to 
25 m2/s and the velocity ranges from 1 m/s to 1.4 m/s.  

6. CONCLUSION 
In this paper, analytical solutions and numerical solutions 
for 1D advection diffusion equation, with an initial condi-
tion and two boundary conditions, have been presented. 
The ADE has been considered as model equation for es-
timation of water pollution by using explicit finite differ-
ence scheme (FTBSCS techniques). We have computed 
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Numerical solution of 1D ADE at different diffusion rate
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relative errors for the scheme which shows a good rate of 
convergence of the numerical scheme. So, the scheme 
(FTBSCS techniques) for ADE is stable and consistent. 

Also, we have presented the numerical solutions 
graphically by varying the value of velocity and value of 
diffusion coefficient. The graphical presentations are veri-
fying the qualitative behavior of the solutions of ADE for 
various considerations of the parameters. The results 
show that the water pollutions are spreading with vary-
ing the diffusion term and advection term with respect to 
time and space.  

This method can be extended for higher dimensional 
ADE as a water pollution model which demands the fur-
ther study. 
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