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Abstract 

A Database Management System (DBMS) with a parallel processing architecture is different from conventional database 

systems. Accordingly, writing SQL for a parallel processing DBMS architecture requires special attention to maintain parallel 

efficiency in DBMS resources usage such as CPU and I/O. In a large data warehouse, a large number of SQL queries are 

executed by different user groups on a daily basis. Query response time needs to be minimal. Many batch jobs run to refresh 

data warehouse subject areas several times a day. To allow batch cycles run more frequently and keep the data warehouse 

environment stable the database system’s resource utilization must be optimal. Running efficient queries is critical to keep 

resource utilization manageable. This article discusses the techniques of SQL writing, tuning, utilization of index, data 

distribution techniques in a parallel processing DBMS architecture. We hope that these techniques will empower SQL 

developers and business intelligence community to write efficient queries which will help maintain a stable data warehousing 

environment. 
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1 INTRODUCTION

ODAY’Sbusiness organizations use data warehouse as a central repository of data that come from internal opera-
tional sources as well as external sources (includes big data) [15]. As business organizations become global, there is 
a need to run business operations twenty four-by-seven so business decisions could be made faster. The data 

warehouse plays a prominent role in providing business intelligence (BI) capabilities [46]. It has proved to be one of the 
key infrastructures of information technology for an organization to better manage and leverage its information [31, 
45]. Data warehouses are used for target marketing, financial reporting, customer services, inventory management, 
and more. They keep changing the way business is conducted [9]. Research suggests that data warehouses are increas-
ingly being used by medium and large companies as these organizations are realizing its benefits [36]. 

Due to global nature of business and increased competition the data warehouse users and analytical community 
want to get near real-time information for strategic and tactical decision making. With the increased capabilities of ad-
vanced database technologies and massive parallel processing systems, it is now possible to load, maintain, and access 
databases of terabyte size [14] in reasonable times. In order to maintain a stable data warehousing environment data 
warehouse design, SQL writing, and load techniques all need to be efficient [2, 27]. Strategies are needed to save data-
base management system (DBMS) resources during load processes in order to make the DBMS available to analytical 
tools and query processing while data warehouse refreshes continue at the same time. The data warehouse SQL que-
ries for both load process and reporting need to be efficient. In this article we propose a comprehensive list of SQL que-
ry optimization techniques. We argue that data warehouse resource consumption could be made optimal by taking 
advantage of parallel processing architecture of database system. 

T 
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This article is organized as follows: Section 2 briefly discusses related work done in this area. Section 3 discusses our 
proposed techniques of performance optimization. Section 4 discusses SQL parallel efficiency implementation steps 
and DBMS resource savings. Section 5 provides SQL query performance metrics of use cases. Section 6 summarizes 
and concludes the article. 

2 LITERATURE REVIEW 

Researches have been conducted in different area of data warehousing. These include design issues [11, 13, 17, and 19], 
extract-transform-load (ETL) tools [23, 43], temporal data updates [18], data warehouse automation [24], data mainte-
nance [1], implementation issues [21] and implementation effectiveness [36]. In this paper, we attempt to address the 
question of how to make a data warehousing environment stable and how to keep resource consumption by individual 
queries optimal by virtue of efficient SQL writing. 

In data warehousing and data management systems parallel processing architecture is considered as a key capabil-
ity [10]. Database system performance and SQL query optimization are important in any database system [39, 47]. In 
real world, the SQL queries that get executed are often quite complex and for data mining tasks queries are even more 
complex and resource intensive [38]. Hence, SQL query optimization is very critical for data warehouse stability. 

In order maintain a stable data warehouse system in terms of resource utilization researchers and industry technical 
leaders propose many tools, techniques, algorithms and strategies. Here we take a cursory look at them. Ghazal et al. 
[20] present an algorithm that dynamically chooses between saving and re-using compiled plans and minimize re-
compiling queries. Ganguly et al. [16] show that a cost model can predict response time with features of query execu-
tion parallelism. Kashem et al. [25] present a query optimization algorithm in rank aware queries to efficiently answer 
to the queries with join of N relations. Rahman and Rutz [24] assert it is critical to ensure that processes in the data 
warehouse are automated and optimized for performance. The authors propose using automation tools in a data 
warehouse ETL process, SQL block generations for views, stored procedures and macros wherever possible. 

Elnaffar et al. [12] state that a DBMS workload could be considered as a determinant of performance tuning tech-
niques. The authors argue that DBMS workloads are different in terms of OLTP and DSS. They propose reconfiguring 
DBMS resources by automatically identifying the DBMS work load. DSS queries process huge volume of data. Hence, 
they take more resources than OLTP queries. Dayal et al. [7] and Sharaf and Chrysanthis [41] propose managing data-
base workloads with mixture of OLTP-like queries that run for fraction of a second and on the other hand, business 
intelligence queries that run for a longer time. The standard benchmark for Decision Support Systems comprises data-
base workload and query performance metrics [42]. Powley et al. [40] present query throttling techniques as method to 
control workload. Kerkad et al. [26] propose a query beehive algorithm for data warehouse buffer management and 
query scheduling to improve data warehouse system's performance and scalability. Rahman [9] proposes a balanced 
scorecard approach for measuring performance of data warehouse operations. 

Meng et al. [34] propose logically splitting large queries so each of them deal with small set of data and cause less 
impact on the overall warehouse environment and thus avoid consuming huge resource by one single large query. 
Narasayya et al. [35] propose a buffer pool page replacement algorithm that effectively shares buffer pool memory in 
multi-tenant relational database-as-a-service (DaaS). VanderMeer et al. [44] propose a cost-based database request 
across a cluster of databases to spread workload and resource usage. Neumann [37] asserts that query optimizer needs 
to be more efficient to efficiently handle different types of SQL queries. The author argues that query optimizer has 
larger impact than that of runtime system. 

Hill and Ross [22] present a method to make outer joins efficient in order to improve query performance and re-
sponse time. Rahman [18] discusses performance improvement of load and report queries, and maintenance of views 
with temporal data. Armstrong [4] proposes reduction of data movement to increase user accessibility, minimize data 
latency and improve performance of the entire data warehouse. Krompass et al. [28, 29] propose a workload manage-
ment system for managing the execution of individual queries based on customer service level objectives. Rahman [49] 
proposes strict governance in data warehouse maintenance and operations to bring discipline and control. This in-
cludes defining guidelines for application developers and IT integration engineers to follow. The author presents a set 
of data warehouse governance best practices with insights from real-world experience and research findings from in-
dustry and academic papers. 

Allen and Parsons [3] demonstrate that anchoring and adjustment during query reuse by novice query writers can 
lead to queries that are less accurate than those written from scratch. This suggests that in real-world SQL queries 
could be written by users and developers of varieties skill-set. A significant number of them could be badly written. 
Hence, SQL queries need to run through some SQL score-card process [1] to ensure parallelism of query runs. Lee et al. 
[30] propose a Statistical Process Control (SPC) charts to detect database performance anomalies and identify their root 
causes. However, performance anomalies could be prevented from happening if each SQL queries could be run 
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through a SQL performance scorecard process [1]. 

In this article, we focus on writing efficient SQL that conforms to parallel processing architecture. We address the 
problem of DBMS resource consumption and stability issue by taking care of SQL efficiency, defining indexes and 
many other SQL optimization techniques. By taking advantage of database parallelism architecture the problem of 
SQL query response time could be minimized [8]. This helps in achieving database system resources (CPU and I/O) 
saving [5]. 

3 PERFORMANCE OPTIMIZATION IN A PARALLEL PROCESSING DBMS 

In a parallel processing DBMS architecture a large number of individual Access Module Processors (AMP) are used. 
We can think of these as “Units of Parallelism”. Each “unit” will have dedicated Disk and dedicated CPU. The goal of 
the Physical Database Design, and the design of the SQL submitted,   is to force the processing to be as well distributed 
across all the AMPs as possible. Because the CPU and other resources are shared with other jobs across the system, the 
actual impact of any given process is:  the highest amount of resources used on any one AMP, times the number of 
AMPs on that particular system.  If the high AMP uses 80 CPU and 2000 I/O,  and we have a 100 AMP system,  then 
the real impact of that job is as if it used 8000 CPU and 20,000 I/O, even if the total resources used by all the AMPs ap-
pears to be a much smaller amount. When a query executes, each step in the process waits until all the AMPS are fin-
ished for a given step, before the next step starts.  For this reason, the most efficient processes are the ones which have 
about the same amount of resources used on each AMP. 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1: A Parallel Processing DBMS Architecture. 
 

Skewed processing is when there is significant difference between the resources used by the “high” AMP and average 
of all AMP’s. If the Physical Database Design has been verified to be optimizes, then attention can be given to the SQL 
being submitted.   This document deals with different way to optimize the SQL. 

 
3.1 Row Redistribution in a Parallel Processing Architecture 

In most large systems, a typical report will need to look at many tables. In a parallel processing database system, care 
must be taken in choosing Primary and Secondary Indexes, to try to avoid “redistribution” steps in the SQL Parsing 
steps. The optimizer joins 2 tables at a time and puts the result into a spool file. Then it joins that to another table or 
spool file, and so on until all the tables are joined. On each of these joins the rows to be joined on each table must reside 
on the same AMP. If the 2 tables have the same primary index (PI) then all the rows that will join together already re-
side on the same AMP. If the 2 tables have different PI’s the DBMS needs to do one of two things: either duplicate (one 
of the) table(s) on all AMPs or redistribute one of the tables (using a PI that is the same as the other table) so that the 
rows being joined now reside on the same AMP. So the reason for redistribution is always that the 2 tables being joined 
do not have the same PI. Sometimes we cannot do anything about this; it is just the way it works. Other times, we can 
build a derived table, narrowing the selection of rows to a smaller number, and try to make the optimizer duplicate the 
table on all AMPS. If it does not disturb other processes; the best way to eliminate redistribution is to build the tables 
being joined with the same PI (this is not always possible). Depending on the choice of indexes, this join process can 
have very different paths to get to the desired results. 

 
3.2 Duplicating on all AMPs and Product JOINs 

Sometimes, the optimizer sometimes builds a copy of a table on each unit of parallelism to facilitate parallel pro-
cessing. There are many cases where this proves to be the best path for the optimizer to take. To ensure that this dupli-
cating takes less resource, a derived table can be used in the SQL, creating a reduced set of rows and/or columns for 
the optimizer to work with. 
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Sometimes a Product-Joins occur when the optimizer needs to join a large and a small table. To improve perfor-
mance: narrow down the rows and columns of that small table; if the smaller table contains static data with few rec-
ords in that case column values could be placed in 
memory variables (Figure 2). That way, a JOIN with the 
smaller table could be entirely eliminated. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure2: Eliminate a skewed JOIN and populate column with memory variable values. 
 
3.3 Parallel Efficiency 

Skewed data distribution and skewed processing adversely affect parallel efficiency. Poor parallel efficiency occurs 
when the join field is highly skewed. Rows are redistributed to AMPs based on the join column values; a dispropor-
tionate number of rows may end up on one AMP on or a few AMPs operation. Highly non-unique PIs cause uneven 
row distribution. More than 1000 occurrences of a value in a Non-Unique Primary Index (NUPI) value begin to cause 
performance degradation problems: Increased I/O’s for updates and inserts of over-represented values; Poor CPU 
parallel efficiency on full table scans and bulk inserts. 
 
 
 
 
 
 
 
 
 

Figure 3: Primary Index defined with two columns for better row distribution. 

 
Figure 3 shows a Primary Index (PI) with two columns to make sure rows are distributed to all AMPs. Initially we 

defined index with a single column, that is, with ‘purch_doc_nbr’ only. But, since there are a large number of the same 
‘purch_doc_nbr’ we redefined PI consisting of two columns. Addition of the second column, ‘purch_doc_line_nbr’ 
made data distribution much better. Table load performance has improved significantly. If there is still a need for an 
index on purch_doc_nbr, we can build a secondary index 
 

3.4 Primary Index Choice Criteria 

There are several things to consider when choosing primary and secondary indexes in a parallel processing environ-
ment. Because some indexes are chosen based on usage of the data in reporting, there might be some testing needed, 
later in the development process to arrive at the best possible set of indexes. The primary index of the table does not 
necessarily need to be a unique index. 

Access Demographics: Columns that would appear with a value in a WHERE clause. Choose the column most fre-
quently used for access to maximize the number of direct, single-row access operations. Distribution Demographics: 
The more unique the index, the better the distribution. 

 
 
 
 

Figure 4: Primary Index defined on a column most often used as a filter. 
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Volatility: The data values should not change quite often. Any changes to PI values may result in heavy I/O over-
head. Join activity should dictate the PI definition. For large tables, the number of Distinct Primary Index values 
should be much greater than the number of units of parallelism. 

 
3.5 Synchronizing Source and Target Primary Indexes 

Common indexes between source and target tables help bulk inserts. The optimizer performs index-based MERGE 
JOINs. In a large join operation, a merge join requires less I/O CPU time than nested join. A merge join usually reads 
each block of the INNER table only once, unless a large number of hash collisions occur. In a real world scenario we 
noticed that due to missing common primary indexes, the SQL of a stored procedure became 90% skewed. It pulled 
records from two large tables with several join columns. Run time was 5 hours and 6 minutes to load 9 million rows. 
After PI synchronization the run-time dropped to 1 minute 11 seconds. 

 
3.6 Deriving Common PI’s Between Source Tables 

Creating and populating a Global Temporary table helps in avoiding uneven PIs and eliminate LEFT OUTER JOIN in 
the Final INSERT-SELECT step (second INSERT in Figure 5). 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 5: Deriving a Common PI for Parallel Efficiency. 

 
In a simulation of SQL-run we found that total CPU consumption dropped to 122 second, yielding a 44.68 sec sav-

ings. The total I/O operation dropped to 111,192, yielding a 70,632 savings. 
 

3.7 Temporary Tables versus Derived Tables 

The solution to some of the resource intensive queries includes conversion of a derived table (DT) to a global tempo-
rary table (GTT). This is because the GTT can have statistics collected whereas the DT cannot. The GTT approach 
makes the optimizer plans more aggressive and rely more heavily on collected statistics as opposed to sampled statis-
tics. As in all of life, there is trade-offs: relying on collected stats would produce better running queries than the ran-
dom samples. With data skew, the random samples were often wrong and caused wrong choices to be made. We can 
achieve better performance plans for tables (GTT) with collected statistics. We cannot collect statistics on derived nor 
volatile tables so these do not perform as well. Statistics collection on join and filter columns improve SQL query per-
formance [6]. Figure 6 shows performance results of an SQL that used derived tables. The result shows that per evalua-
tion criteria the SQL failed in terms of computing resources such as CPU, IO and spool space usage. Their parallel effi-
ciencies are very poor. 

 
 
 
 
 
 
 
 

Figure 6:Resource Usage with an SQL that uses derived tables. 
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Figure 7 shows that each SQL passed in terms of performance evaluation criterion. Computing resources consump-
tion such CPU, IO and spool usage is much lower compared to the resources used shown in Figure 6. Each SQL al-
soshows that they higher parallel efficiency. 

 
 
 
 
 
 
 
 

 
Figure 7: Resource Usage with SQL’s that use GTT. 

 

3.8 Handling NULLs for Better Parallel Efficiency 

When performing a LEFT OUTER JOIN operation with a column with so many common values performance of join 
operation degrades. It is important that NULL or blank values be filtered out in the SQL while doing join operation. 
An MPP (Massively Parallel Processing) machine can get very slow when there is nothing to “parallel process”. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Avoiding NULLs for Parallel Efficiency. 

 
Figure 8 shows a scenario in which case only 2 rows with useful values. The rest of the rows show NULL/BLANK 

which severely impact database optimizer to perform an MMP. 
 

3.9 Avoiding Updates between Large Tables 

When tables are large SELECT/INSERT performs much better. Update is good when source table has fewer rows. An 
example provided in Figure 9. 
 
 
 
 
 
 
 
 
 

Figure 9: Performance Degrades with large volume of Updates. 

 
In one scenario the UPDATE operation by joining large source table caused CPU consumption of 1,013 seconds. If 

we need to use a subset of data from large tables using global temporary tables will help in computing resource con-
sumption. In a simulation we noticed that by using global temporary tables for a sub-set of data in source table the 
UPDATE operation took only 600 CPU seconds. 

 
3.10 Partitioned Primary Index 

If they are available, Partitioned Primary Indexes (PPI) can be very productive. A PPI is equivalent to row level parti-
tioning. Queries which specify a restrictive condition on the partitioning column avoid full table scans. Larger tables 
are good candidates for partitioning. The greatest potential gain derived from partitioning a table is the ability to read 
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a small subset of the table instead of the entire table. 

Current commercial databases have come up with efficient indexes to improve query performance. When a query is 
run with filters on PPI columns the DBMS will directly pull data based on particular bucket(s) instead of scanning the 
whole table. Based on a SQL score-card on both PPI and non-PPI tables it was found that the SQL uses only 33% of the 
resources to pull rows from a PPI table in relation to a non-PPI table. The run time is also less in the same proportion. 
The potential gain derived from partitioning a table is the ability to read a small subset of the table instead of the entire 
table. Queries which specify a restrictive condition on the partitioning column avoid full table scans. By defining a PPI 
on ‘row effective timestamp’ the report query performance was found to be four times faster and CPU savings about 
33%. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 10: Resource Usage: PPI vs. No PPI tables. 

 
Figure 10 shows a comparison of query response time and computational resource savings between PPI and No-PPI 

queries. The first query was run to pull 53K rows, with no PPI defined. The response time was eight seconds and CPU 
consumption was 29 seconds in row one. The same query was run against the same table with PPI defined on row ef-
fective date. For the second run the response time was one second and resource consumption was two seconds per row 
two. The first two rows show the resource usage statistics. A second query was run to pull 424K rows, with no PPI de-
fined. The response time was 25 seconds and resource consumption was 101 CPU seconds in row three. The same que-
ry was run against the same table with PPI defined on row effective date. This second run response time was four sec-
onds and resource consumption was 33 seconds in row four. 

There are many techniques to improve performance of data warehouse queries, ranging from commercial database 
indexes and query optimization. A number of indexing strategies have been proposed for data warehouses in litera-
ture and are heavily used in practice. 

4 SQL PARALLEL EFFICIENCY AND DBMS RESOURCE USAGE 

In a data warehouse where thousands of queries run by batch processes, analytical and ad-hoc queries and applica-
tions all run concurrently, the computing resources are the most precious resources. These computing resources need 
to be used very efficiently [33] to keep the data warehousing environment stable and running. The analytical commu-
nity cannot tolerate long running queries or delayed results. Response time of queries is one of the most important in-
dicators of data warehouse stability and its success. The knowledge workers lose confidence in the system if the enter-
prise data warehouse cannot return information within a reasonable time, especially when it comes to tactical decision 
making. Transaction latency expressed as a deadline is the most commonly used form of SLA [32], reflecting the user’s 
expectation for the transaction to finish within a certain amount of specified time [41]. 

In order to ensure the data warehouse is stable, scalable, and queries run efficiently many organizations institute a 
governing body to oversee the operation and running of the data warehouses. They closely monitor the deployment of 
objects such as views, stored procedures and macros to make sure they perform efficiently in the data warehouse. In 
most cases all code that lands on data warehouses goes through a code review process to make sure they are opti-
mized. As a cross-check the DBA (database administrators) team constantly monitors queries and load procedures to 
make sure the data warehouse is stable and running efficiently. Some things to watch for, to help with parallel efficien-
cy: 
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4.1 Large Distribution Steps 

Occasionally, there will be a job with a step which takes a lot of resources, just to get two tables ready for a join step.  
This happens (as mentioned earlier) when the two tables being joined do not have the same Primary Index (PI). Some-
times, one of the tables can be changed, so the PI’s are the same.  When the PI’s are the same, the large redistribution 
step is eliminated, sometimes with very nice results.  However, we need to be careful not to introduce too much non-
uniqueness in the PI. Table 1 shows a real example of such results. The first row shows that almost all of the resources 
used on this job were spent in the redistribution step. However, once redistribution steps are eliminated most of there-
source use disappeared (second row). 

 
Table 1 

Resource Saving Avoiding Row Redistribution 

 

 

 

 

 

 
4.2 Secondary Indexes 

Sometimes we cannot just change the PI of a table for the purposes of helping a join step. There are many reasons for 
choosing the PI of a table. The first criteria should be Reporting Access Requirements.   In these cases,   it is possible to 
add a Secondary Index, the same as what we would have liked for a PI. 
 

Table 2 
Computing Resource Saving using Secondary Index 

 
 
 
 
 
 
 
 

 
In one such case, we had a lot of queries doing the same join, so we added a Secondary Index to a table. This helped 

the JOIN Condition find the applicable rows faster. This is bit different from an Index which helps find the rows being 
selected. 

Our experiment shows that resource reduction for one day was 6,000 CPU seconds, spool space 350 gigabytes, and 
I/O reduction 50 million. Elapse time was 15 minutes. 
 

4.3 Partitioning Rows which are Accessed Often 

In this next case,  we found that a lot of queries were asking for rows within a given date range,  so we added Partition-
ing, in a way that reduced tables scans to a smaller set of data-blocks. Table 3 represents a set of queries for 1 day’s 
activity. 
 

Table 3 
Using Partitioning to Avoid or Reduce Table-Scans 
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4.4 Skewed Processing 

Sometimes we chose a certain PI to help reporting, but allows too many rows to be stored on 1 or just a few AMPs 
(Units of Parallelism).  We discussed Skew in a previous section.   In this case, we can use a different PI to spread the 
data more evenly, then build a Secondary Index where we removed the first Primary Index.Here is a case where we 
did this.  We use a bit more resource with a Secondary Index over a Primary,   but we save a lot more than that by 
spreading the work out over the AMPS more evenly. 

In Figure 11, we can see where we installed the change at 14:00 hours: There is a set of jobs which run every hour. 
We can see the reduction in resources for the next hours. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 11: Resource Saving by Improving Parallel Efficiency. 

 
 

4.5 Using Set versus Multi-Set Tables 

SET tables do not allow duplicate rows – Multi-set tables do. The combination of a SET table, and a Non-Unique Pri-
mary Index, can dangerous if there is no other uniqueness constraint on the table (such as a Unique Secondary Index). 
If there is a Unique Secondary Index, the table does not need to “worry” about checking for duplicate rows (because 
the Index will be checking). If there is no other unique constraint on the table, when we have multiple rows with that 
same PI, as rows are inserted, the table needs to check all rows with the same PI to see if in fact the whole row is a du-
plicate. If it is a full row duplicate, it will not be allow to be inserted.   This dupe-row-checking can get very expensive 
if there are a lot of rows with the same (non-unique) PI. 

 
Table 4 

Resource Savings – Set vs. Multi-Set tables 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Let us suppose, there are 1000 rows with the same PI to be inserted. The second row inserted needs to only check 1 

row for duplicates. The 100th row needs to check 99 rows. The 950th row needs to check 949 rows. The number of row 
checks would be 1+2+3+4+5…+999. Here are the results of a set of changes we made to a set of jobs which populated a 
few tables. We changed them from set to multi-set tables, to avoid duplicate row checking. And we changed the Pri-
mary Indexes to a column with less skewing. And we added a Secondary Index to replace the benefit we had with the 
old Primary Index. 
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5 MEASURING SQL PERFORMANCE 

Performance statistics of SQL blocks in a stored procedure are shown in Figure 10. We show the score-card results of a 
stored procedure SQL blocks. The SQL’s were written in such a way that they are in compliant with the parallel pro-
cessing architecture of the underlying database system.  

In Figure 12 we can see that each of the SQL’s in a stored procedure passed in terms of CPU, I/O, and spool parallel 
efficiency. In the stored procedure SQL’s were written in small code blocks. Each of them takes fewer CPU seconds; 
they run with parallel efficiency. We see all of the SQL blocks passed in score-carding. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 12: Score-Card Results of SQL’s of a Stored Procedure 

6 CONCLUSION 

In this article we provided an overview of a parallel processing DBMS architecture. We have highlighted as to what 
key aspects needs to be considered to take advantage of parallelism. We have provided an exhaustive list of techniques 
of SQL optimization. These techniques have been tested and implemented in a large production data warehouse sys-
tem. In each of the optimization techniques we have provided computing resource savings as well query response time 
decrease statistics. 

We proposed evaluating SQL queries using SQL scorecard tools. A scorecard process and performance optimization 
techniques will enable the SQL programmers to empower themselves in writing efficient queries without much de-
pendence on database administrators. Currently, database administrators spend many hours inspecting various log 
files and queries [48]. Our proposed developer-centric SQL query optimization will help database administrators 
maintain a stable database system and its performance with much less effort. As part of our future research we intend 
to do explore optimization of queries in NoSQL database systems. 
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